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IN MEMORY OF ARTHUR SARD

I. INTRODUCTION

We consider a global measure (the integrated mean squared error) of the
approximation of a function by a cubic smoothing spline, and show that the
rate at which this measure converges to zero is determined by the boundary
behavior of the function.

We assume we have observations

i= 0,.... n - I,
(I )

where g(t) is an unknown function on [0, II and where the F.; are random
errors satisfying

E(F.;) = 0,

E(F.iF. j ) = a
2
(ju'

a 2 > 0.

A smoothing spline estimate of g is a function f(t; A, n) minimizing

I n~ I A .1

- \ ' [f(t;) - Xi f + "(2 )2 I [f"(t) 1
2dt.

n i 0 1T 00

(2)

(3)

(The factor (21T)2 is merely included for convenience and makes no essential
difference.) Smoothing splines were proposed in [5,7,9] and some of their
properties have been discussed in [2,81.
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We will examine the behavior ofJ as an approximate of g as n --+ 00 and
tl = tl(n) --+ °by considering a global measure of the approximation-the
integrated mean square error (IMSE)

.1

Ej [J(t;tl,n)-g(t)1 2 dt
• (j

(4)

as n --+ 00. We show that the rate at which this measure converges to zero
not only depends on the differentiability of g on 10, 11 but on the differen­
tiability of g periodically extended, and thus on its boundary behavior. These
results are established via Fourier analysis.

It is well known that the function minimizing Eq. (3) is a natural cubic
spline with knots at the points i/n, i = 0,... , n - I.

In this paper tl = tl(n) is a positive quantity.

2. STATEMENT AND DISCUSSION OF RESULTS

It is useful to decompose the IMSE into the integrated squared bias and
the integrated variance

.1 .1

E I IJ(t) - g(t) 1
2 dt = I [EJ(t) - g(t) 1

2 dt
'(j '(j

.1

+ I a 2 IJ(t) Idt,
.()

where a 2 IJ(t)] = EIJ(t) - EJ(tW·
Initially we will assume that J, g E C 2 [0, I I with

(5)

J(O)=J(I), g(O)=g(l)

Under this condition we have

and 1'(0) =1'(1), g'(O) = g'(I). (6)

THEOREM I. In order that na 2 [J(t) Idt --+ 0 as n --+ 00 and "l(n) --+ 0 it is
necessary and sufficient that tln 4

--+ 00. In this case

We will frequently use the Fourier series of g:

g(t) = \ ' ak exp(2nikt).
k - if'

(8)
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THEOREM 2. If). --t 0 and n 4
). --t 00 as n --t 00 under assumption (6) and

lak l2 = O(lkl- 5 -')for some [; > 0 we have

I ~ 1 ·8

I" I 12 - \ ' I 1
2 A "JEf(t) - g(t) dt -._ Gi (I + 'J.4)2

-0 IJI,;"n!2 I\,

+O(n- 5-,).-1/4+ n -4). (9)

If

this expression is

If

0<[; < 4, ( 10)

(II)

then the expression is

(12 )

(13)

COROLLARY. Under the conditions of Theorem I, if I ak 1
2
~~ k

o< [; < 4, the optimal rate of decay of the IMSE is

If L 1 ak 1
2 k 8 < 00 the optimal rate of decay is

(14 )

(15)

The latter case of the corollary has also been proved in 181.
The assumption g(O) = g(I), g'(O) = g'(l) can be relaxed and it appears

that the rate of convergence is slower yet if these conditions do not hold. The
proofs are substantially more complicated and will appear elsewhere.

These results show that the optimal rate at which the IMSE tends to zero
is determined by the rate at which the Fourier coefficients of g decay, which
depends on the smoothness of g periodically extended. Thus, even though g
may be very smooth as a function on 10, II, if derivatives at 0 and I do not
match, the rate of decay may be relatively slow.

This seems an undesirable property of the smoothing spline procedure. If
the boundary behavior were :;nown, one could modify the procedure by
adding an appropriate polynomial to the data. If the boundary behavior is
unknown, it may be possible to estimatt: it from the data and modify the
procedure accordingly, but the properties of such a modified procedure are
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not immediately clear. In some ways the importance of the boundary
behavior is not too surprising; the Gibb's phenomenon is well known for
classical Fourier series, and in the case of interpolating splines the boundary
behavior can determine a global measure of approximation 161. In the
statistical literature, Hall 131 has pointed out the importance of boundary
beha'/ior for orthogonal series estimates of a probability density function,
and Gasser and Muller 141 note the effect of the boundary on a non­
parametric estimate of a regression function. It is noteworthy that a least
squares spline approximation (a spline with fewer knots than there are data
points, fitted to the data by least squares) has the property that
IMSE ~ n R/9 if g E C 4 regardless of the boundary behavior [ I j.

Our results are global and do not indicate in which regions the bias is
large. It is plausible that the integrated squared bias is dominated by the
integral over a small region near the boundary. and that perhaps the rate of
convergence of the IMSE is faster on an interval [{;, 1 -- [; I. Cross-validation
121 has been suggested as a procedure for determining a value of A to
minimize IMSE. Since the boundary behavior has a crucial influence on the
minimal IMSE, it is likely that it plays an important role in the outcome of
cross-validation, perhaps overwhelming the influence of the interior. This is
suggested by the results in Rosenblatt 161. where it is shown that the
integrated squared error of a "natural spline" interpolator converges to zero
at a slower rate than the squared error away from the boundary. This is due
to a skin effect near the boundary which dominates the integrated squared
error asymptotically. This can be remedied as indicated in the paper hy
appropriately estimating the derivative at the boundary and incorporating the
estimate in the interpolator.

We have carried out our analysis for a cubic smoothing spline. Similar
results hold for a more general smoothing spline. We would also expect
comparable. or even a more drastic, influence of boundary behavior in the
multidimensional case, and that similar phenomena occur in other
regularization problems.

We note that the following generalization of the earlier theorems and
corollary hold. The details of the proofs are not given since they are quite
analogous to the derivations given for the cubic smoothing spline.

THEOREM 3. Let us consider a smoothing spline estimate I of g (see
Eqs. (I) and (2)) that minimizes

I n 1 • .1

-~ ~ [I(ti)--_\X+~.!.,i Ipii(tWdt. (16)
n iO (2n) -II

Assume that f. g E C U ) 10, 11 with

k ~c 0, l.. ... j l. ( 17)
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In order that ga 2 If(t)1 dt-tO as n--t 00 and A(n)-tO it is necessary and
sufficient that A(n) n 2j -t 00. Then

( 18)

THEOREM 4. If A -t 0, n 2
j

..1. -t 00 under assumption (17) and Ia k 1
2 =

O(lkl 2
j -I-')for some I: > 0, then

.,1 2 _ \'2 A2k4j

\ l£f(l)- get)] dt- Ikl01!2l akl (I + Ak 2j )2

+O(n- 2j I 'A 1/12j )+n 2j ) (19)

as n --+ 00. If lak l2 ~ Ikl- 2j I ',0 < f; < 2j, this expression is

If L... I ak 1
2 k 4j < 00 then the expression is

~..1.2.

(20)

(21 )

COROLLARY. Under the conditions of Theorem 4, if lak l2 ~ k 2j I ,

0<1: < 2j, the optimal rate of decay of the IMS£ is

n (2; + ,)i(2;+ I +<1

while if '5' I ak 1
2 k 4i < 00 the optimal rate of decay is

n 4jiPj· I)

3. NUMERICAL EXAMPLES

(22)

(23)

Since the results of our theorems are asymptotic in nature, we thought it
interesting to compute some numerical examples. For the first example we
consider the function g(t) = te - 2t, 0 ~ t ~ 1. To ascertain the effect of the
boundary conditions we also compute a modified estimate in which a cubic
polynomial is added to the data and then subtracted from a smoothing spline
fit to the modified data. The polynomial pet) is chosen so that i(t) =
g(t) + pet) satisfies i lkl

( I) ~ ilk) (0) = 0, k = 0, I, 2.
The results for n = 20 and 100 are summarized in Table L which shows

for several values of ..1. the integrated squared bias (B 2
) of the smoothing

spline. the integrated squared bias (B 2 mod) of the modified estimate. Via'
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TABLE

A!(271)' B' B' (mod.) Va a(opL)

(/1 = 20)

10 I 1.2 X 10
1

8.2 X 10 9.5 X 10 1.1 X 10 I

10 8.7 X 10 4 6.0 X 10 1.0 X 10 I 9.3 X 10
10 1.8 X 10 4 1.3 X 10 1.2 X 10 I 3.9 X 10
10 4 1.6 X 10 1.2 X 10 I. 1.7 X 10 I 1.0 X 10
10

,
1.0 X 10

,
8.3 X 10 < 2.6 X 10 I 2.5 X 10

1

(/1 = 100)

10 I 1.3 X 10 1 8.9 X 10
,

6.0 X 10 1 4.7 X 10 I

10 9.0 X 10 4 6.0 X 10
,

1.0 X 10 3.0 X 10 I

10
1

2.1 X 10 4 1.3 X 10 1.8 X 10 1.1 X 10 I

10 4 2.2 X 10-' 1.2 X 10
,

3.3 X 10 2.6 X 10
10 1.8 X 10

,
1.0 X 10 5.9 X 10 5.5 X 10

1

(V is the integrated variance), and the value of a for which the corresponding
value of A is optimal for the smoothing spline. We note that g(t) varies from
a to 1.8 X 10 -I: thus 0= 10 - I would give additive noise that greatly masks
the underlying function, whereas 0= 10 - 2 would be 10(){) noise at the
maximum value of g. From Table I it is seen that the modification reduces
B 2 by about a factor of 10 for all given values of A. Figures 1 and 2 show the
local bias for n = 20, Aj(2n)2 = 10- 5 and Figs. 3 and 4 show the bias for
n = 100, Aj(2n)2 = 10- 5

• There is little qualitative difference between the
bias for n = 20 and n = 100. The major contribution to B 2 for the smoothing

0.006...------,.-----------...,.----,

0004

0.002

00

-0.002

-0.004L....-----'------l..--------------'
00 0.2 0.4 0.6 0.8 1.0

FIG. I. Bias of smoothing splines. g(t) = (e ". 11 = 20. /./(2:7)' ~ 10 '.
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000 I ,..----,----r---..,...----;------,

3SLJ

-0.001 ......----'"-----------........--'--'
0.0 0.2 0.4 0.6 08 1.0

FIG. 2. Bias of modified smoothing spline. g(1) "" Ie 2'.11"" 20. i.;'(27r)' "" 10 '

spline comes from the boundary region near t = 0, where the first and second
derivatives are large. It appears that the width of this region is proportional
to A. 1/4, which may correspond to something like a bandwidth for the
smoothing procedure. Figures 5 and 6 show the bias and modified bias for
n=20, A./(271/= 10- 3

• This corresponds to smoothing with a wider
bandwidth and the bias is spread more throughout the interval. The results
for n = 100 are very similar.

0.01..------,----,---.....,..----.,-----,

0.0075

0.0050

0.0025

0.00

- 00025 .............""---' --'- ...... ....... .....
0.0 0.2 0.4 06 0.8 1.0

FIG. 3. Bias of smoothing spline. g(t) "" Ie 21. 11 "" 100. A/(2rr)2 "" 10 '

640/33/4h
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0.0020..----.....,.----.----...,....---..,...-----,

0.0015

0.0010

0.0005

- 0.001 0 L... ....l.. -I...__----J

QO Q2 Q4 O~ O~ 10

FIG. 4. Bias of modified smoothing spline. g(t) c= Ie 2/. n = 100. A/(2rr)' = 10 '

For a second example we chose the function g(t) = (t + 0.1)1/2(1.1 - t)I/4,

0< t <1. The maximum value of g is approximately 1. Table II summarizes
the results for various values of A. In this case the modification appears to be
more effective for smaller values of A. Figures 7 and 8 show the bias for
n = 100, Aj(2;rr)2 = 10 3. Again the principal contributions to B 2 for the
smoothing spline come from regions near the boundaries. This effect
becomes more pronounced as A decreases.

Although the smoothing spline is in a sense a third order method. it is

0.06...--------.----...,....---,------,

0.0

-0.02 L-__-..i. ....l.. ..1- ...l....__~

QO 02 Q4 O~ O~ 10

FIG. 5. Bias of smoothing spline. g(t) = Ie ". n = 20. Je/(27r)' ~c 10



ERROR OF A SMOOTHING SPLINE

0.0075 ......----.----.,..---...,...---.....------.

-00075 '--__--J. ~ ...l_ ..l....______J

OD 02 04 OB 08 1.0

FIG. 6. Bias of modified smoothing spline. g(t) 0= te- ", n 0= 20. ;./(271)' 0= 10 .1
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biased for cubic polynomials. Figures 9 and 10 show the bias in approx­
imating the function gel) = (t - ~ )(l -1 )(l - ~) for A/(2n)2 = 10 J and
10- 5

• Again we see that the boundary regions make the major contribution
to B2 for small A, whereas the bias is spread throughout the interval for
larger A.

TABLE II

A!(271)' 8' B 2 (mod.) Via a (opt.)

(n 0= 20)

10 2.7 X 10 I.l X 10 1.0 X 10 I 1.6 X 10 I

10 .1 3.9 X 10 4 2.0 X 10 4 1.2 X 10 I 5.7 X 10 I

10 4 4.0 X 10 1.3 X 10 1.7 X 10 I 1.5 X 10
10 4.5 X 10 " 1.6 X 10 " 2.6 X 10 I 4.2 X 10

(11 0= 100)

10 2.8 X 10 .1 l.l X 10 1.0 X 10 5.3 X 10 I

10 .1 5.1 X 10 4 2.1 X 10 4 1.8 X 10 1.7 X 10 I

10 4 5.6 X 10 I.lxlO 3.3 X 10 4.1 X 10
10 7.0 X 10 " 1.6 X 10 " 5.9 X 10 1.0 X 10
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0.08,...-----,.----,-----,----.,-------,

-002'-- l...- ~ l.._ l.._____J

00 02 04 0.6 08 10

FIG. 7. Bias of smoothing spline. g(l) = (t + 0.1)1 '( 1. t)1 '. 1/ 100. i,i(2;or)' 10

100.80.60.40.2

00

0.01

0.02.-----..-----..-----..,----.,.-----,

- 0.031.----.l-----'----...l.-----'------I
00

-0.02

-0.01

FIG. 8. Bias of modified smoothing spline. g(t)=(t+O.I)I'(1.

Jc/(2Jrj' = 10 )

1)1'. 1/= 100.
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0.06r------r---....,...----,----..,....----,

0.04

-0.04 -------

-0.06 '--__......l. ...l... ..l.-__--J

00 0.2 0.4 06 0.8 1.0

Bias of smoothing spline. g(t) = (t - 1)(1- tJ(l- ~). n = 100. 1c/(271)' = 10 1

001 r------r---....,...---....,----..,......-----,

-0.005

1.0080.60.40.2

-0.01 L.... '-- '-- '-- '--__.......I

0.0

Bias of smoothing spline. g(l) = (t - 1HI - -l HI - ~). n = 100. 1c/(271)' = 10 <
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4. PROOFS OF THEOREMS

We first find a Fourier representation of the function f which minimizes
(3). We let

f(t) = \' c i exp(271ijt),

I II 1

x;= r:: \' xk exp(-271ijkjn),
V n k 0

\'
k~ - ,

Since the fitted function is real, c; = c ;' Inserting this representation into
Eq. (3) we have, after some simplifications using the orthogonality of the
exponential functions,

(3) = T(£) = '.' ,I Ici _ .X; 1

2

i 0 vn
n I (I

+A \'
i - 0 I

, . 1
4

1 "!J + sn C i j ,I II i'·

Since this is a sum of nonnegative terms, we minimize for each fixed J. For

j = 0 it is clear that

C\ll = 0, s *" O.
(24)

For each j? I, the minimizing coefficients Cit III are

Summing over all s,

C i =-
(C; - .x;/vn)

A

say, where



Thus

and
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1 1 xj

c; t sn = -U-,-+-5-n-)-;-4 A+ r; v;!'

365

(25)

It can be verified that the f thus determined is in fact the minimizer of T(f)
by checking that any variation increases T(f). The minimizer f gives

We now express the IMSE in terms of f. Denoting the Fourier coefficients
of g by

.1

G;= I g(t) exp(-2nijt) dt
·0

we can express the IMSE as

.1 ~

EI [f(t)-g(tWdt=E '\' Ic;-ay,
. 0 i - (f:~

and we have

In the case j = 0, a2 (co) = a2/n and Eco= ao ' Also for 5 *' 0, c,n = O. so
that a 2 (c,n) = O.

For j = 1•...• n - 1. noting that E(x;/v;!) = a;, we have

I I
Ec. = --a

/+sn (J+5nt A+r; J

and

To summarize, we have
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LEMMA I. If gEC2 [O,lj and g(O)=g(I), g'(O)=g'(I), the C
minimizing T(C) is given by Eqs. (24) and (25). The resulting IMSE is

.1 .1

I IEf(t)~g(t)12dt+1 a2[f(t)]dt=B 2+V.
·0 . 0

say, where

n- 1 ''I-

B 2 = I Go - ao 1
2 + ",' "' '

.i=-1 s-::- I u+ sn~:(A + rJ - a jtll
, 1

2

•

s-

I I

U+sn)8 (X+ry'

Proof of Theorem 1. We approximate the expression for V2 above by a
simpler sum and then approximate this latter sum by an integral. We first
note that we may rewrite

where L' denotes summing over j 1= O. This follows since V 2 is of the form
J7- 1 uj and unA = u_ A. The error is incurred in discarding a single term.
The sum can be written as

a
2

"," I (~+e.)=a2 "," I I
- A 2·8 J A' ~ + R.n I jl nl2 ( + r) ) n -;,2 ( + rJ' J

ej = O(n .. 8) uniformly in j so that

We now estimate (l/(A + rj)')(I//) by 1/(1 +Al)2;

(1 + A/ + Lu 0 '(-J-/(-j-+-ns-)-)4~)7'2

I
= (I + A/) 2 + d i •

where
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K is a constant. Also

2 ~4

a \" J
,,;; ----,- :-(-j-1:-'-'--4)'1

n- I/I~/l + 1';/ ~

where we have estimated the sum by an integral.
Finally, another integral estimate gives

This establishes the theorem.

Proof of Theorem 2. We first approximate

367

n-]

lao -aoI2 + \'
j-I

by

Writing aj = aj + (aj - a;l, the error in this approximation is of the order

The first term is O(n- 5
-'), and the third term is O(n 4,). The second term

is

n-l

\'
j- I

Using lajl2 = OU- 5
-,) and estimating (A + r)-2 as In the proof of

Theorem j by l (l + A/)2 this expression is
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by an integral estimate. The last term is from similar estimates

o (n - 5-, \ ' .8 I 2) = O(n 5 'A 14).
IJI ,;,n!2 } (A + r;l .

Now

\ 'I

Ikl,;, ni2

and

( k4 (A ~ r
k

) - I)' = (Ak" + \ + 6
k

- I) ,

(
Ak4 + 6k ) 2

= Ak4 + 6
k
+ I ..

where 6k =0((kl(k+n)t). Now if f(xl=(x/(x+I))2 then f'(x)=
2x/(x + 1)3 is bounded for x> 0, and f(x + 6) = f(x) + 0(6) for 6> O.
Thus

To estimate the magnitude of the sum we split the range of summation
into two parts, summing over k ~ A 1/4 and A 1/4 ~ k ~ n12. The resulting
sums are of the same order of magnitude as

If la k l

2 ~ k 5 ',0 < /; < 4, then each of these terms is of the order A1,,4.

If L: I ak 1
2 k H < 00 then the primary contribution is from the second term

which is of order A2.

Proof of Corollary. (1) If la k l2 ~ k s-'. 0 < /; < 4 then the IMSE is of
the order
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If A= n "the optimal a is seen to be a = 4/(5 + c) in which case the IMSE
is of order n-(4+d/(5~d.

(2) If L I ak 1

2 k S < C1J the IMSE is of the order

The optimal A in this case is A~ n - 4/~ in which case IMSE ~ n- 8/".

5. FINAL REMARKS

One should note that the conditions

k = 0, I,..., j - I

are not usually imposed on smoothing splines minimizing Eq. (16). Since this
information is incorporated in our approximation, one would expect the
asymptotic behavior of our approximation (in terms of expected mean square
error) to be at least as good as that of the standard smoothing spline.
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